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Abstract The crossing number of a graph is the minimum number of edge intersec-
tions in a plane drawing of a graph, where each intersection is counted separately. If
instead we count the number of pairs of edges that intersect an odd number of times,
we obtain the odd crossing number. We show that there is a graph for which these
two concepts differ, answering a well-known open question on crossing numbers. To
derive the result we study drawings of maps (graphs with rotation systems).

1 A Confusion of Crossing Numbers

Intuitively, the crossing number of a graph is the smallest number of edge crossings
in any plane drawing of the graph. As it turns out, this definition leaves room for
interpretation, depending on how we answer the questions: what is a drawing, what
is a crossing, and how do we count crossings? The papers by Pach and Tóth [7]
and Székely [9] discuss the historical development of various interpretations and
definitions—often implicit—of the crossing number concept.

A drawing D of a graph G is a mapping of the vertices and edges of G to the
Euclidean plane, associating a distinct point with each vertex, and a simple plane
curve with each edge so that the ends of an edge map to the endpoints of the corre-
sponding curve. For simplicity, we also require that
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• A curve does not contain any endpoints of other curves in its interior
• Two curves do not touch (that is, intersect without crossing), and
• No more than two curves intersect in a point (other than at a shared endpoint)

In such a drawing the intersection of the interiors of two curves is called a crossing.
Note that by the restrictions we placed on a drawing, crossings do not involve end-
points, and at most two curves can intersect in a crossing. We often identify a drawing
with the graph it represents. For a drawing D of a graph G in the plane we define

• cr(D) - the total number of crossings in D

• pcr(D) - the number of pairs of edges which cross at least once; and
• ocr(D) - the number of pairs of edges which cross an odd number of times

Remark 1 For any drawing D, we have ocr(D) ≤ pcr(D) ≤ cr(D).

We let cr(G) = min cr(D), where the minimum is taken over all drawings D of G

in the plane. We define ocr(G) and pcr(G) analogously.

Remark 2 For any graph G, we have ocr(G) ≤ pcr(G) ≤ cr(G).

The question (first asked by Pach and Tóth [7]) is whether the inequalities are
actually equalities.1 Pach [6] called this “perhaps the most exciting open problem in
the area.” The only evidence for equality is an old theorem by Chojnacki, which was
later rediscovered by Tutte—and the absence of any counterexamples.

Theorem 1.1 (Chojnacki [4], Tutte [10]) If ocr(G) = 0, then cr(G) = 0.2

In this paper we will construct a simple example of a graph with ocr(G) <

pcr(G) = cr(G). We derive this example from studying what we call weighted maps
on the annulus. Section 2 introduces the notion of weighted maps on arbitrary sur-
faces and gives a counterexample to ocr(M) = pcr(M) for maps on the annulus. In
Section 3 we continue the study of crossing numbers for weighted maps, proving in
particular that cr(M) ≤ cn ·ocr(M) for maps on a plane with n holes. One of the diffi-
culties in dealing with the crossing number is that it is NP-complete [2]. In Section 4
we show that the crossing number can be computed in polynomial time for maps on
the annulus. Finally, in Section 5 we show how to translate the map counterexample
from Section 2 into an infinite family of simple graphs for which ocr(G) < pcr(G).

2 Map Crossing Numbers

A weighted map M is a surface S and a set P = {(a1, b1), . . . , (am, bm)} of pairs of
distinct points on ∂S with positive weights w1, . . . ,wm. A realization R of the map

1Doug West lists the problem on his page of open problems in graph theory [12]. Dan Archdeacon even
conjectured that equality holds [1].
2In fact they proved something stronger, namely that in any drawing of a non-planar graph there are two
non-adjacent edges that cross an odd number of times. Also see [8].



Fig. 1 Optimal drawings: pcr
and cr (above left), ocr (above
right)

M = (S,P ) is a set of m properly embedded arcs γ1, . . . , γm in S where γi connects
ai and bi .3

Let

cr(R) =
∑

1≤k<�≤m

ι(γk, γ�)wkw�,

pcr(R) =
∑

1≤k<�≤m

[ι(γk, γ�) > 0]wkw�,

ocr(R) =
∑

1≤k<�≤m

[ι(γk, γ�) ≡ 1 (mod 2)]wkw�,

where ι(γ, γ ′) is the geometric intersection number of γ and γ ′ and [x] is 1 if the con-
dition x is true, and 0 otherwise. We define cr(M) = min cr(R), where the minimum
is taken over all realizations R of M . We define pcr(M) and ocr(M) analogously.

Remark 3 For every map M , ocr(M) ≤ pcr(M) ≤ cr(M).

Conjecture 1 For every map M , cr(M) = pcr(M).

Lemma 2.1 If Conjecture 1 is true, then cr(G) = pcr(G) for every graph G.

Proof Let D be a drawing of G with minimal pair crossing number. Drill small holes
at the vertices. We obtain a drawing R of a weighted map M . If Conjecture 1 is true,
there exists a drawing of M with the same crossing number. Collapse the holes to
vertices to obtain a drawing D′ of G with cr(D′) ≤ pcr(G). �

However, we show below that we can separate the odd crossing number from the
crossing number for weighted maps, even in the annulus (a disk with a hole).

When analyzing crossing numbers of drawings on the annulus, we describe curves
with respect to an initial drawing of the curve and a number of Dehn twists. Consider,
for example, the four curves in the left part of Figure 1. Comparing them to the

3If we take a realization R of a map M , and contract each boundary component to a vertex, we obtain a
drawing of a graph with a given rotation system [3]. For our purposes, maps are a more visual way to look
at graphs with a rotation system.



corresponding curves in the right part, we see that the curves labeled c and d have
not changed, but the curves labeled a and b have each undergone a single clockwise
twist.

Two curves are isotopic rel boundary if they can be obtained from each other
by a continuous deformation which does not move the boundary ∂M . Isotopy rel
boundary is an equivalence relation, its equivalence classes are called isotopy classes.
An isotopy class on the annulus is determined by a properly embedded arc connecting
the endpoints, together with the number of twists performed.

Lemma 2.2 Let a ≤ b ≤ c ≤ d be such that a + c ≥ d . For the weighted map M in
Figure 1 we have cr(M) = pcr(M) = ac + bd and ocr(M) = bc + ad .

Proof The upper bounds follow from the drawings in Figure 1, the left drawing for
crossing and pair crossing number, the right drawing for odd crossing number.

Claim pcr(M) ≥ ac + bd .

Proof of the Claim Let R be a drawing of M minimizing pcr(R). We can apply
twists so that the thick edge d is drawn as in the left part of Figure 1. Let α,β, γ

be the number of clockwise twists applied to the ends of arcs a, b, c on the inner
boundary to obtain the drawing R, where α = β = γ = 0 corresponds to the drawing
shown in the left part of Figure 1. Then,

pcr(R) = cd[γ �= 0] + bd[β �= −1] + ad[α �= 0] + bc[β �= γ ]
+ ab[α �= β] + ac[α �= γ + 1]. (1)

If γ �= 0, then pcr(R) ≥ cd + ab because at least one of the last five conditions in
(1) must be true; the last five terms contribute at least ab (since d ≥ c ≥ b ≥ a), and
the first term contributes cd . Since d(c − b) ≥ a(c − b), cd + ab ≥ ac + bd , and the
claim is proved in the case that γ �= 0.

Now assume that γ = 0. Equation (1) becomes

pcr(R) = bd[β �= −1] + bc[β �= 0] + ad[α �= 0] + ac[α �= 1] + ab[α �= β]. (2)

If β �= −1, then pcr(R) ≥ bd + ac because either α �= 0 or α �= 1. Since bd + ac ≥
bc + ad , the claim is proved in the case that β �= −1.

This leaves us with the case that β = −1. Equation (2) becomes

pcr(R) = bc + ad[α �= 0] + ac[α �= 1] + ab[α �= −1]. (3)

The right-hand side of Equation (3) is minimized for α = 0. In this case pcr(R) =
bc + ac + ab ≥ ac + bd because we assume that a + c ≥ d . �

Claim ocr(M) ≥ bc + ad .

Proof of the Claim Let R be a drawing of M minimizing ocr(R). Let α,β, γ be as in
the previous claim. We have



ocr(R) = cd[γ ]2 +bd[β +1]2 +ad[α]2 +bc[β +γ ]2 +ab[α+β]2 +ac[α+γ +1]2,

(4)
where [x]2 is 0 if x ≡ 0 (mod 2), and 1 otherwise.

If β �≡ γ (mod 2), then the claim clearly follows unless γ = 0, β = 1, and α = 0
(all modulo 2). In that case ocr(R) ≥ bc + ab + ac ≥ bc + ad . Hence, the claim is
proved if β �≡ γ (mod 2).

Assume then that β ≡ γ (mod 2). Equation (4) becomes

ocr(R) = cd[β]2 + bd[β + 1]2 + ad[α]2 + ab[α + β]2 + ac[α + β + 1]2. (5)

If α ≡ 1 (mod 2), then the claim clearly follows because either cd or bd contributes
to the ocr. Thus we can assume α ≡ 0 (mod 2). Equation (5) becomes

ocr(R) = (cd + ab)[β]2 + (bd + ac)[β + 1]2. (6)

For both β ≡ 0 (mod 2) and β ≡ 1 (mod 2) we get ocr(R) ≥ bc + ad . �

We get a separation of pcr and ocr for maps with small integral weights.

Corollary 2.3 There is a weighted map M on the annulus with edges of weight a = 1,
b = c = 3, and d = 4 for which cr(M) = pcr(M) = 15 and ocr(M) = 13.

Optimizing the gap over the reals yields b = c = 1, a = (
√

3−1)/2, and d = 1+a,
giving us the following separation of pcr(M) and ocr(M).

Corollary 2.4 There exists a weighted map M on the annulus with ocr(M) ≤√
3/2 pcr(M).

Conjecture 2 For every weighted map M on the annulus, ocr(M) ≥
√

3
2 pcr(M).

3 Upper Bounds on Crossing Numbers

In Section 5 we will transform the separation of ocr and pcr on maps into a separation
on graphs. In particular, we will show that for every ε > 0 there is a graph G so that

ocr(G) <
(√

3/2 + ε
)

cr(G).

The gap cannot be arbitrarily large, as Pach and Tóth showed.

Theorem 3.1 (Pach and Tóth [7]) Let G be a graph. Then cr(G) ≤ 2(ocr(G))2.4

This result suggests the question whether the linear separation can be improved.
We do not believe this to be possible:

4Better upper bounds on cr(G) in terms of pcr(G) are known [5, 11].



Fig. 2 Pulling an endpoint (left) and contracting the edge (right)

Conjecture 3 There is a c > 0 so that cr(G) < c · ocr(G).

In this section, we will show that our approach of comparing the different cross-
ing numbers for maps with a fixed number of holes will not lead to a super-linear
separation. Namely, for a (weighted) map M on a plane with n holes, we always have

cr(M) ≤ ocr(M)

(
n + 4

4

)
/5, (7)

with strict inequality if n > 1. It follows that for fixed n, there is only a constant factor
separating cr(M) and ocr(M). And only fixed, small n are computationally feasible
in analyzing potential counterexamples.

Observe that as a special case of Equation (7), if M is a (weighted) map on the
annulus (n = 2) we get that cr(M) < 3 ocr(M), which comes reasonably close to the√

3/2 lower bound from the previous section.
Before proving Equation (7) in full generality, we first consider the case of unit

weights.
For this section only, we will switch our point of view from maps as curves be-

tween holes on a plane to maps as graphs with a rotation system; that is, we contract
each hole to a vertex, and record the order, in which the curves (edges) leave the
vertex. Our basic operation will be the contraction of an edge by pulling one of its
endpoints along the edge, until it coincides with the other endpoint (the rotations of
the vertices merge). Figure 2 illustrates pulling v towards u along uv.5

Consider a drawing of G with the minimum number of odd pairs (edge pairs that
cross an odd number of times), ocr(G). We want to contract edges without creating
too many new odd pairs. For each edge e, let oe be the number of edges that cross e an
odd number of times. Then

∑
e∈E(G) oe = 2 ocr(G), and since each edge is incident

to exactly two vertices,
∑

v∈V (G)

∑

e	v

oe = 4 ocr(G).

Applying the pigeonhole principle twice, there must be a vertex v ∈ V (G) with∑
e	v oe ≤ 4 ocr(G)/n, and there is a non-loop edge e incident to v with oe ≤

4 ocr(G)/(n · d∗(v)) (where d∗(v) counts the number of non-loop edges incident
to v). Contracting v to its neighbor along e creates at most oe(d

∗(v) − 1) <

5The illustration is taken from [8], where we investigate some other uses of this operation for graph draw-
ings.



4 ocr(G)/n odd pairs (only edges intersecting e oddly will lead to odd intersections,
and the parity of intersection along loops with endpoint v does not change; self-
intersections can be removed). Repeating this operation n − 1 times, we transform G

into a bouquet of loops at a single vertex with at most ocr(G)
∏n−2

i=0 (1 + 4/(n − i))

odd pairs (strictly less if n > 1). Without changing the rotation of the vertex, we
can redraw all loops so that each odd pair intersects exactly once, and other pairs
do not cross at all. We can then undo the contractions of the edges in reverse order
without creating any new crossings. This yields a drawing of G with the original ver-
tex rotations with at most ocr(G)

∏n−2
i=0 (1 + 4/(n − i)) crossings. Since the product

term equals
(
n+4

4

)
/5, we have shown that cr(G) ≤ ocr(G)

(
n+4

4

)
/5 (strict inequality

for n > 1), as desired.
This argument proves Equation (7) for maps with unit weights. The next step is to

extend this lemma to maps with arbitrary weights.
Consider two curves γ1, γ2 whose endpoints are adjacent and in the same order.

In a drawing minimizing one of the crossing numbers we can always assume that the
two curves are routed in parallel, following the curve that minimizes the total number
of intersections with all curves other than γ1 and γ2. The same argument holds for
a block of curves with adjacent endpoints in the same order. This allows us to claim
Equation (7) for maps with integer weights: a curve with integral weight w is replaced
by w parallel duplicates of unit weight.

If we scale all the weights in a map M by a factor α, all the crossing numbers
will change by a factor of α2. Hence, the case of rational weights can be reduced to
integer weights. Finally, we observe that if we consider any of the crossing numbers
as a function of the weights of M , this function is continuous: This is obvious for a
fixed drawing of M , so it remains true if we minimize over a finite set of drawings
of M . The maximum difference in the number of twists in an optimal drawing is
bounded by a function of the crossing number; and thus it suffices to consider a finite
set of drawings of M . We have shown:

Theorem 3.2 cr(M) ≤ ocr(M)
(
n+4

4

)
/5 for weighted maps M on the plane with n

holes.

4 Computing Crossing Numbers on the Annulus

Let M be a map on the annulus. We explained earlier that as far as crossing numbers
are concerned, we can describe a curve in the realization of M by a properly em-
bedded arc γab connecting endpoints a and b on the inner and outer boundary of the
annulus, and an integer k ∈ Z, counting the number of twists applied to the curve γab .
Our goal is to compute the number of intersections between two arcs after applying
a number of twists to each one of them. Since twists can be positive and negative and
cancel each other out, we need to count crossings more carefully. Let us orient all arcs
from the inner boundary to the outer boundary. Traveling along an arc α, a crossing
with β counts as +1 if β crosses from right to left, and as −1 if it crosses from left
to right. Summing up these numbers over all crossings for two arcs α and β yields



ι̂(α,β), the algebraic crossing number of α and β . Tutte [10] introduced the notion

acr(G) = min
D

∑

{e,f }∈(E
2)

|ι̂(γe, γf )|,

the algebraic crossing number of a graph, a notion that apparently has not drawn any
attention since.

Let Dk(γ ) denote the result of adding k twists to the curve γ . For two curves α

and β connecting the inner and outer boundary we have:

ι̂
(
Dk(α),D�(β)

) = k − � + ι̂(α,β). (8)

Note that ι(α,β) = |ι̂(α,β)| for any two curves α,β on the annulus.
Let π be a permutation of [n]. A map Mπ corresponding to π is constructed as fol-

lows. Choose n+1 points on each of the two boundaries and number them 0,1, . . . , n

in the clockwise order. Let ai be the vertex numbered i on the outer boundary and
bi be the vertex numbered πi on the inner boundary, i = 1, . . . , n. We ask ai to be
connected to bi in Mπ .

We will encode a drawing R of Mπ by a sequence of n integers x1, . . . , xn as
follows. Fix a curve β connecting the a0 and b0 and choose γi so that ι(β, γi) = 0
(for all i). We will connect ai, bi with the arc Dxi (γi) in R. Note that for i < j ,
ι̂(γi , γj ) = [πi > πj ] and hence

ι̂(Dxi (γi),D
xj (γj )) = xi − xj + [πi > πj ].

We have

acr(Mπ) = cr(Mπ) = min

{∑

i<j

|xi − xj + [πi > πj ]|wiwj : xi ∈ Z, i ∈ [n]
}
, (9)

pcr(Mπ) = min

{∑

i<j

[xi − xj + [πi > πj ] �= 0]wiwj : xi ∈ Z, i ∈ [n]
}
, (10)

and

ocr(Mπ) = min

{∑

i<j

[xi − xj + [πi > πj ] �≡ 0 (mod 2)]wiwj : xi ∈ Z, i ∈ [n]
}
.

(11)
Consider the relaxation of the integer program for cr(Mπ):

cr′(Mπ) = min

{∑

i<j

|xi − xj + [πi > πj ]|wiwj : xi ∈ R, i ∈ [n]
}
. (12)

Since (12) is a relaxation of (9), we have cr′(Mπ) ≤ cr(Mπ). The following lemma
shows that cr′(Mπ) = cr(Mπ).



Lemma 4.1 Let n be a positive integer. Let bij ∈ Z and let aij ∈ R be non-negative,
1 ≤ i < j ≤ n. Then

min

{∑

i<j

aij |xi − xj + bij | : xi ∈ R, i ∈ [n]
}

has an optimal solution with xi ∈ Z, i ∈ [n].
Proof Let x∗ be an optimal solution which satisfies the maximum number of xi −
xj + bij = 0, 1 ≤ i < j ≤ n. Without loss of generality, we can assume x∗

1 = 0.
Let G be a graph on the vertex set {1, . . . , n} with an edge between vertices i, j if
x∗
i − x∗

j + bij = 0. Note that if i, j are connected by an edge and one of x∗
i , x∗

j is
an integer, then both x∗

i and x∗
j are integers. It is then enough to show that G is

connected.
Suppose that G is not connected. There exists a non-empty A � V (G) so that there

are no edges between A and V (G) − A. Let χA be the characteristic vector of the
set A, that is, (χA)i = [i ∈ A]. Let f (λ) be the value of the objective function on x =
x∗ +λ ·χA. Let I be the interval on which the signs of the xi −xj +bij , 1 ≤ i < j ≤ n

are the same as for x∗. Then I is not the entire line (otherwise G would be connected).
Since f is linear on I , f is optimal at λ = 0, and I contains a neighborhood of
0, it must be that f is constant on I . Choosing x = x∗ + λχA for λ an endpoint
of I gives an optimal solution satisfying more xi − xj + bij = 0, 1 ≤ i < j ≤ n,
a contradiction. �

Theorem 4.2 The crossing number of maps on the annulus can be computed in poly-
nomial time.

Proof Note that cr′(Mπ) is computed by the following linear program Lπ :

min
∑

i<j

yijwiwj ,

yij ≥ xi − xj + [πi > πj ], 1 ≤ i < j ≤ n,

yij ≥ −xi + xj − [πi > πj ], 1 ≤ i < j ≤ n.

�

Question 1 Let M be a map on the annulus. Can ocr(M) be computed in polynomial
time?

We conjectured earlier that crossing number and odd crossing number agree on
maps. A more moderate goal would be to establish the following conjecture.

Conjecture 4 For any map M on the annulus cr(M) = pcr(M).

5 Separating Crossing Numbers of Graphs

We modify the map from Lemma 2.2 to obtain a graph G separating ocr(G) and
pcr(G). The graph G will have integral weights on edges. From G we can get an



Fig. 3 The inside flipped

unweighted graph G′ with ocr(G′) = ocr(G) and pcr(G′) = pcr(G) by replacing an
edge of weight w by w parallel edges of weight 1 (this does not change any of the
crossing numbers). If needed we can get rid of parallel edges by subdividing edges,
which does not change any of the crossing numbers.

We start with the map M from Lemma 2.2 with the following integral weights:

a =
⌊√

3 − 1

2
m

⌋
, b = c = m, d =

⌊√
3 + 1

2
m

⌋
,

where m ∈ N will be chosen later.
We replace each pair (ai, bi) of M by wi pairs (ai,1, bi,1), . . . , (ai,wi

, bi,wi
) where

the ai,j (bi,j ) occur on ∂S in clockwise order in a small interval around of ai (bi ).
As before, we can argue that all the curves corresponding to (ai, bi) can be routed in
parallel in an optimal drawing and, therefore, the resulting map N with unit weights
will have the same crossing numbers as M .

We then replace the boundaries of the annulus by cycles (using one vertex for each
ai,j and bi,j ), obtaining a graph G. We assign weight W = 1 + pcr(N) to the edges
in the cycles. This ensures that in a drawing of G minimizing any of the crossing
numbers the boundary cycles are embedded without any intersections. Consequently,
a drawing of G on the sphere that minimizes any one of the crossing numbers looks
very much like the drawing of a map on the annulus. With one subtle difference: one
of the boundaries may flip.

Given the map N on the annulus, the flipped map N ′ is obtained by flipping the
order of the points on one of the boundaries. In other words, there are essentially two
different ways of embedding the two boundary cycles of G on the sphere without
intersections depending on the relative orientation of the boundaries. In one of the
cases the drawing D of G gives a drawing of N , in the other case it gives a drawing of
the flipped map N ′. Fortunately, in the flipped case the group of edges corresponding
to the weighted edge from ai to bi must intersect often with each other (as illustrated
in Figure 3).

Now we know that

ocr(G) ≤ ocr(N) (since every drawing of N is a drawing of G)

≤ w1w3 + w2w4 (by Lemma 2.2)

≤ 3

2
m2 (by the choice of weights).



We will presently prove the following estimate on the flipped map.

Lemma 5.1 ocr(N ′) ≥ 2m2 − 4m.

With that estimate and our discussion of flipped maps, we have

pcr(G) = min{pcr(N),pcr(N ′)}
≥ min{pcr(N),ocr(N ′)} (since ocr ≤ cr)

≥ min{√3m2 − 2m,2m2 − 4m} (choice of w, and Lemma 5.1).

By making m sufficiently large, we can make the ratio of ocr(G) and pcr(G) arbitrar-
ily close to

√
3/2.

Theorem 5.2 For any ε > 0 there is a graph G such that

ocr(G) < (
√

3/2 + ε)pcr(G).

The proof of Lemma 5.1 will require the following estimate.

Lemma 5.3 Let 0 ≤ a1 ≤ a2 ≤ · · · ≤ an be such that an ≤ a1 + · · · + an−1. Then

max|yi |≤ai

⎛

⎝
(

n∑

i=1

yi

)2

− 2
n∑

i=1

y2
i

⎞

⎠ =
(

n∑

i=1

ai

)2

− 2
n∑

i=1

a2
i .

Proof of Lemma 5.1 Let w1 = a,w2 = b,w3 = d,w4 = c (with a, b, c, d as in the
definition of N ). In any drawing of N ′ each group of the edges split into two classes,
those with an even number of twists and those with an odd number of twists (two
twists make the same contribution to ocr(M ′) as no twists). Consequently, we can
estimate ocr(N ′) as follows.

ocr(N ′) = min
ki∈{0,1,...,wi }

⎛

⎝
4∑

i=1

(
ki

2

)
+

4∑

i=1

(
wi − ki

2

)
+

∑

i �=j

ki(wj − kj )

⎞

⎠

≥ −1

2

4∑

i=1

wi + min
0≤xi≤wi

⎛

⎝
4∑

i=1

x2
i

2
+

4∑

i=1

(wi − xi)
2

2
+

∑

i �=j

xi(wj − xj )

⎞

⎠

= −1

2

4∑

i=1

wi + 1

4

(
4∑

i=1

wi

)2

+ min|yi |≤wi/2

⎛

⎝2
4∑

i=1

y2
i −

(
4∑

i=1

yi

)2⎞

⎠

≥ 1

2

4∑

i=1

w2
i − 1

2

4∑

i=1

wi (using Lemma 5.3)

≥ 1

2

⎛

⎝
(√

3 + 1

2
m − 1

)2

+ 2m2 +
(√

3 − 1

2
m − 1

)2

− 4m

⎞

⎠

≥ 2m2 − 4m. (13)



The equality between the second and third line can be verified by substituting yi =
xi − wi/2. �

Proof of Lemma 5.3 Let y1, . . . , yn achieve the maximum value. Replacing the yi by
|yi | does not decrease the objective function. Without loss of generality, we can as-
sume 0 ≤ y1 ≤ y2 ≤ · · · ≤ yn. Note that if yi < yj , then yi = ai (otherwise increasing
yi by ε and decreasing yj by ε increases the objective function for small ε).

Let k be the largest i such that yi = ai . Let k = 0 if no such i exists. We have
yi = ai for i ≤ k and yk+1 = · · · = yn. If k = n we are done.

We conclude the proof by showing that k < n is not possible. Let t be the common
value of yk+1 = · · · = yn. Note that we have t = yk+1 ≤ ak+1.

Let

f (t) =
((

k∑

i=1

ai

)
+ (n − k)t

)2

− 2

((
k∑

i=1

a2
i

)
+ (n − k)t2

)
.

We have

f ′(t) = 2(n − k)

((
k∑

i=1

ai

)
+ (n − k − 2)t

)
.

Note that f ′(t) > 0 for t < ak+1. (This is easy to see when k < n−1; for k = n−1 we
make use of the assumption that an ≤ ∑n−1

i=1 ai .) Therefore, f (t) will be maximized
by t = ak+1 over values t ≤ ak+1. Hence, yk+1 = ak+1, contradicting our choice
of k. �

6 Conclusion

The relationship between the different crossing numbers remains mysterious, and we
have already mentioned several open questions and conjectures. Here we want to
revive a question first asked by Tutte (in slightly different form). Recall the definition
of the algebraic crossing number from Section 4:

acr(G) = min
D

∑

{e,f }∈(E
2)

|ι̂(γe, γf )|,

where γe is a curve representing edge e in a drawing D of G. It is clear that

acr(G) ≤ cr(G).

Does equality hold?

Acknowledgement Thanks to the anonymous referee for helpful comments.
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